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ABSTRACT

Inferring phenotypic patterns from population-scale clinical
data is a core computational task in the development of per-
sonalized medicine. One important source of data on which
to conduct this type of research is patient Electronic Med-
ical Records (EMR). However, the patient EMRs are typi-
cally sparse and noisy, which creates significant challenges
if we use them directly to represent patient phenotypes. In
this paper, we propose a data driven phenotyping frame-
work called PACIFIER (PAtient reCord densIFIER), where
we interpret the longitudinal EMR data of each patient as a
sparse matrix with a feature dimension and a time dimen-
sion, and derive more robust patient phenotypes by explor-
ing the latent structure of those matrices. Specifically, we
assume that each derived phenotype is composed of a subset
of the medical features contained in original patient EMR,
whose value evolves smoothly over time. We propose two
formulations to achieve such goal. One is Individual Basis
Approach (IBA), which assumes the phenotypes are differ-
ent for every patient. The other is Shared Basis Approach
(SBA), which assumes the patient population shares a com-
mon set of phenotypes. We develop an efficient optimiza-
tion algorithm that is capable of resolving both problems
efficiently. Finally we validate PACIFIER on two real world
EMR cohorts for the tasks of early prediction of Congestive
Heart Failure (CHF) and End Stage Renal Disease (ESRD).
Our results show that the predictive performance in both
tasks can be improved significantly by the proposed algo-
rithms (average AUC score improved from 0.689 to 0.816
on CHF, and from 0.756 to 0.838 on ESRD respectively, on
diagnosis group granularity). We also illustrate some inter-
esting phenotypes derived from our data.
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1. INTRODUCTION

Patient Electronic Medical Records (EMR) are systematic
collections of longitudinal patient health information gen-
erated from one or more encounters in any care delivery
setting. Typical information contained in EMR includes pa-
tient demographics, encounter records, progress notes, prob-
lems, medications, vital signs, immunizations, laboratory
data and radiology reports, and etc. Effective utilization
of EMR is the key to many medical informatics research
problems, such as predictive modeling [36], disease early de-
tection [30], comparative effectiveness research [17] and risk
stratification [19].

Working directly with raw EMR is very challenging be-
cause it is usually sparse, noisy and irregular. Deriving
better and more robust representation of the patients, or
phenotyping, is very important in many medical informatics
applications [13, 35]. One significant challenge for pheno-
typing with longitudinal EMR is data sparsity. To illustrate
this, we show the EMR of a Congestive Heart Failure (CHF)
patient in Fig.1, which is represented as a matrix. The hori-
zontal axis is time with the granularity of days. The vertical
axis is a set of medical events, which in this example is a set
of diagnosis codes. Each dot in a matrix indicates that the
corresponding diagnosis is observed for this patient at the
corresponding day. From the figure we can see that there
are only 37 nonzero entries within a 90-day window.

With those sparse matrices, many existing works just treat
those zero values as actual zeros [30, 27, 25], and construct
feature vectors from them with some summary statistics,
then feed those feature vectors into computational models
(e.g., classification, regression and clustering) for specific
tasks. However, this may not be appropriate because many
of those zero entries are not actual zeros but missing (the
patient did not pay a visit and thus there is no correspond-
ing record). Thus, the feature vectors constructed in this
way are not accurate. As a consequence, the performance of
the computational models will be compromised.

To handle the sparsity problem, we propose a general
framework, PACIFIER (PAtient reCord densIFIER), for phe-
notyping patients with their EMRs, which imputes the val-
ues of those missing entries by exploring the latent struc-
tures on both feature and time dimensions. Specifically,
we assume those observed medical features in EMR (micro-
phenotypes) can be mapped to some latent medical con-
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Figure 1: An example of the patient’s EMR. The
horizontal axis represents the number of days since
the patient has records. The vertical axis corre-
sponds to different diagnosis codes. A green dia-
mond indicates the corresponding code is diagnosed
for this patient at the corresponding day.

cept space with a much lower dimensionality, such that each
medical concept can be viewed as a combination of several
observed medical features (macro-phenotypes). In this way,
we expect to discover a much denser representation of the
patient EMR in the latent space, and the values of those
medical concepts evolve smoothly over time. We develop
the following two specific formulations to achieve such goal:

e Individual Basis Approach (IBA), which approximates
each individual EMR matrix as the product of two la-
tent matrices. One is the mapping from those observed
medical features to the latent medical concepts, the
other describes how the values of those medical con-
cepts evolve over time.

e Shared Basis Approach (SBA), which also approximates
the EMR matrix for each patient as the product of two
latent matrices, but the mapping matrix from those
observed medical features to the latent medical con-
cepts is shared over the entire patient population.

When formulating PACIFIER, we enforce sparsity on the la-
tent medical concept mapping matrix to encourage represen-
tative and interpretable medical concepts. We also enforce
temporal smoothness on the concept value evolution matrix
that captures the continuous nature of the patients. We de-
velop an efficient Block Coordinate Descent (BCD) scheme
for both formulations, that has the capability of process-
ing large-scale datasets. We validate the effectiveness of our
method in two real world case studies on predicting the on-
set risk of Congestive Heart Failure (CHF) patients and End
State Renal Disease (ESRD) patients. Our results show that
the average prediction AUC in both tasks can be improved
significantly (from 0.689 to 0.816 on CHF prediction, and
from 0.756 to 0.838 on ESRD respectively) with PACIFIER.

The rest of this paper is organized as follows: Section 2
presents the general representation of EMR and the problem
of patient risk prediction which is one important problem
that patient phenotyping will be applied to. In Section 3
we introduce the details of PACIFIER. The experimental
results are presented in Section 4. In Section 5 we discuss
the connection of the proposed approaches to related work
and insights for future works. Section 6 concludes the paper.
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Figure 2: Granularity of medical features. For diag-
nosis events, features can be constructed at differ-
ent levels of granularity: ICD9 code, diagnosis code
(DxGroup) and HCC code.
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2. PATIENT RISK PREDICTION WITH ELEC-

TRONIC MEDICAL RECORDS

Risk prediction is among the most important applications
in clinical decision support systems and care management
systems, where it often requires building predictive mod-
els for a specific disease condition. As Electronic Medical
Records (EMR) data becomes widely available, informative
features for risk prediction can be constructed from EMR.
Based on the EMR data, for example, care providers usually
want to assess the risk scores of a patient developing differ-
ent disease conditions, such as congestive heart failure [30,
6], diabetes [24], and end stage renal disease [1]. Once the
risk of a patient is predicted, proper intervention and care
plan can be designed accordingly.

The detailed EMR data documents the patient events in
time, which typically includes diagnosis, medication, and
clinical notes. The diagnosis events are among the most
structured, feasible and informative events, and are prime
candidates for constructing features for risk prediction [20,
26]. The diagnosis events, often in the form of International
Classification of Diseases 9 (ICD9) codes, also come with
well-defined feature groups at various levels of granularity
such as diagnosis group (DxGroup) and higher-level hierar-
chical condition categories (HCC). For example, the code
401.1 Benign Hypertension belongs to DxGroup 401 Essen-
tial Hypertension, which is a subcategory in HCC 091 Hy-
pertension.

One of the key steps of risk prediction from EMR is to
construct features vectors from EMR events, which are used
as inputs for classifiers. The goal of feature construction is
to capture sufficient clinical nuances that are informative to
a specific risk prediction task. Traditionally the feature vec-
tors are directly derived from the raw EMR records [30, 27,
25]. In this paper for each patient we first construct a longi-
tudinal patient matriz, with a feature dimension and a time
dimension [27]. Maintaining the time dimension enables us
to leverage the temporal information of the patients dur-
ing feature construction. We present the procedure of con-
structing feature vectors via longitudinal patient matrices as
follows.

In a cohort for a disease study, each patient is also as-
sociated with a disease status date called operation criteria
date (OCD), on which the disease is diagnosed. A typical
risk prediction task is to predict the disease status of the pa-
tients at a certain time point in the future (e.g., half a year).
We call this period as the prediction window. To build use-
ful predictive models, a prediction window before the OCD
is usually specified, and the records before the prediction
window are used to train the models, i.e., all records within
the prediction window before the OCD are considered to be
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Figure 3: Construction of the longitudinal pa-

tient matrix [27] from Electronic Medical Records
(EMR). The goal is to predict disease status of a
patient at the operation criteria date (OCD), given
the past medical information before the prediction
window. For each patient, we construct a longitudi-
nal patient matrix, using medical features at a spe-
cific granularity. For each patient, the feature vector
for classification/regression is finally generated by
extracting summary statistics from the longitudinal
matrix within the observation window.

invisible. Figure 3 illustrates the raw EMR data, OCD, and
prediction window.

The next step is to construct a longitudinal patient ma-
trix for each patient from the available EMR events, which
consists of two dimensions: the feature dimension and the
time dimension. One straightforward way to construct such
matrices is to use the finest granularity in both dimensions:
use the types of medical events as the feature space for the
feature dimension and use day as the basic unit for time
dimension. Unfortunately the patient matrices constructed
in this way are too sparse to be useful. As a remedy, we
use weekly aggregated time, and the value of each medical
feature at one time point is given by the counts of the corre-
sponding medical events within that week. Recall that the
medical features can be retrieved at different levels of gran-
ularity, which also moderately reduces some sparsity in the
data. The choice of feature granularity should not be too
coarse, otherwise predictive information within features at a
finer level may be lost during the retrieval, as we will show in
the experiments. Note that after these preprocessing steps,
the constructed patient matrices are still very sparse.

Finally we need to extract summary statistics from the
longitudinal patient matrices as the feature vectors for clas-
sifiers. Since patients have different lengths of records, typ-
ically an observation window of interest is defined and the
summary statistics (e.g., mean, standard deviation) are ex-
tracted within the observation window for all patients. The
overall process is given in Figure 3.

3. TEMPORAL DENSIFICATION VIA PACI-

FIER

During the aforementioned feature construction process,
there are many zeros in the longitudinal patient matrices
due to the extreme sparsity in the raw EMR data. How-
ever, many of these zeros are not real zeros and instead, they
indicate missing information (i.e, no visit). Treated as infor-
mative values in the feature extraction process, these values
are likely to bias the training of classifiers and yield subop-
timal performance. In this paper we propose to treat the
zeros in the longitudinal patient matrices as missing values,
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Figure 4: Illustration of the Pacifier framework.
We treat a longitudinal patient matrix as a par-
tially observed matrix from a complete patient ma-
triz. We assume the medical features can be mapped
to some latent medical concepts with a much lower
dimensionality such that each medical concept can
be viewed as a combination of several observed med-
ical features. For each patient, the values of those
medical concepts evolve smoothly over time. Thus
the complete patient matrix for each patient can
be factorized into a latent medical concept mapping
matrix and a concept value evolution matrix.

and we densify the sparse matrices before extracting fea-
tures to reduce the bias introduced by the sparsity, in hopes
of that, the densified matrices provide better phenotyping
of patients. We propose novel frameworks of densifying the
partially observed longitudinal patient matrices, leveraging
their observed medical histories. The proposed framework
explores the latent structures on both feature and time di-
mensions and encourages the temporal smoothness of each
patient.

Let there be n patients with EMR records available in
the cohort, and there be in total p medical features. After
the feature construction process we obtain n longitudinal
patient matrices with missing entries, one for each patient.
For the ith patient, its time dimension is denoted by ¢,
i.e., there are medical event records covering a time span
of t; before the prediction window. We denote the ground
truth matrix of the ith patient as X(;) € R?*" and in our
medical records we only have a partial observation of the
matrix at some locations, whose indices are given by a set
(). According to the macro phenotype assumption, we
assume the medical features can be mapped to some latent
medical concepts space with a much lower latent dimension
of size k, such that each medical concept can be viewed as
a combination of several observed medical features.

Specifically, we assume that the full longitudinal patient
matrix can be approximated by a low rank matrix X ;) =~
U(s)V(iy, which can be factorized into a sparse matrix U;) €
RP** whose columns provide mappings from medical fea-
tures to medical concepts, and a dense matrix Vi;) € REXt:
whose rows indicates the temporal evolution of these med-
ical concepts acting on the patient over time. We call Uy,
the latent medical concept mapping matriz (abbr. latent
mapping matriz) and V() the concept value evolution ma-
triz (abbr. evolution matriz). For each patient we assume
that the values of those medical concepts evolve smoothly
over time. Given the values and locations of observed el-
ements in the longitudinal patient matrices, our proposed
densification method learns their latent mapping matrices
and evolution matrices. We call this densification framework



PACIFIER, which stands for PAtient reCord densIFIER. The
idea of PACIFIER is illustrated in Figure 4.

Based on different natures of the medical cohorts, homo-
geneous or heterogeneous, we propose two densification for-
mulations: an individual basis approach for heterogeneous
patients and a shared basis approach for homogeneous pa-
tients, and then we provide an efficient optimization algo-
rithm for PACIFIER that can be used to solve large-scale
problems. Here and later we abuse the word basis to denote
the columns of a concept mapping matrix, while we don’t
require them to be orthonormal. Note that the real basis of
the space spanned by the columns of the latent mapping ma-
trix can always be obtained by performing QR factorization
on this basis matrix U;.

3.1 Individual Basis Approach for Heteroge-
neous Cohort

In the heterogeneous cohort where patients are very dif-
ferent from each other in nature, the medical concepts for
each patient may also be different from one patient to an-
other. In the individual basis approach (PACIFIER-IBA), we
allow patients to have different latent medical concepts.

Let Q?i) denote the complement of ;). We adopt the pro-
jection operator Pq,, (X(i)) used in matrix completion [2]:
Pa,) (X@y) = X@ (k) if (4,k) € Q) and Pa,) (X)) =0
otherwise. An intuitive approach for formulating PACIFIER-
IBA is to solve the following problem for each patient:

1
U(igg’lv(i) 272_”7390) Uiy Viy = Xi)llF + R(Ugy, Vi) (1)
where R (U, V(s)) denotes the regularization terms that en-
code our assumptions and prevent overfitting. We also im-
pose a non-negative constraint on the medical concept Uy,
because most medical events and measurements in EMR are
non-negative, and meaningful medical concepts consist of
these medical events should also be non-negative. We now
discuss how to design proper terms in R(U(;), V(;)) that lead
to some desired properties:
1) Sparsity. We want only a few significant medical features
to be involved in each medical concept so that the concepts
can be interpretable. Therefore, we introduce sparsity in the
latent mapping matrix U(;) via sparse inducing ¢1-norm on
U(s). Indeed the non-negativity constraint may have already
brought a certain amount of sparsity, and it has been shown
that for non-negative matrix factorization, the sparsity reg-
ularization can further improve the decomposition [10].
2) Owerfitting. To overcome overfitting we introduce an £
regularization on the concept value evolution matrix Vi;). It
can be shown that this term also improves the numerical
condition of computing a matrix inversion in our algorithm.
3) Temporal smoothness. A patient matrix describes the
continuous evolution of medical features for a patient over
time. Thus, along the time dimension it makes intuitive
sense to impose the temporal smoothness, such that the
value of one column of a longitudinal patient matrix is close
to those of its previous and next columns. To this end,
we introduce the temporal smoothness regularization on the
columns of the concept value evolution, which describes the
smooth evolution on the medical concepts. One commonly
used strategy to enforce temporal smoothness is via penal-
izing pairwise difference [37, 34]:
ti—1
Vi Rille =" (Vi (5) = Vi (5,5 + 1))

Jj=1
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where R;) € RY >4+ s the temporal smoothness coupling
matrix defined as follows: R;)(j,k) = 1ifi = j, R (4, k)
—1ifi=j41, and Ry (j, k) = 0 otherwise.

In the loss function of Eq. (1) we want the values of the
low-rank matrix to be close to X(;) at the observed locations,
directly solving which may lead to complex algorithms. An
alternative way is to introduce an intermediate matrix S;
such that Pgq,(S:) = Pa,;(X;), and we want Ug;)Vi;) to be
close to S(;). An immediate advantage of propagating the
observed information from X ;) to Ug)V(;) indirectly is that
we can derive very efficient algorithms and data structures,
which give the capability of solving large-scale problems, as
we will show later. To this end, we propose the following
PACIFIER-IBA learning model for each patient:

51186 — Uy Vil + AU (2)

min
Sy Uiy Vs
1 2 1 2
Fr2 g Vi lle + Ao Vi Reay I
subject to: 'Pg(i) (S(i)) = Pﬂ(i) (X(i)), U(i) >0

3.2 Shared Basis Approach for Homogeneous
Cohort

In homogeneous cohorts where the medical concepts of
patients are very similar to each other, we can assume that
all patients share the same medical concept mapping U €
RP**. We propose the following PACIFIER-SBA formulation:

. n 1 2
s l1Sa) — UV AU 3
s DT a IS UV R+ MU ()

+A2 Zi:l T,lgLHV(z)”% + A3 Zi:l Q%LHV(Z)R(””%
subject to:  Pq, (Swy) = P, (X)), U >0

Since the densification of all patients are now coupled via the
shared concept mapping, an immediate benefit of the PACI-
FIER-SBA formulation is that, we can transfer some knowl-
edge among the patients, which is attractive especially when
the available information for each patient is very limited and
the patients are homogeneous in nature. We demonstrate
in the experiments that the PACIFIER-SBA performs better
than IBA when patients are homogeneous.

On a separate note, considering densification of each pa-
tient as a learning task, the SBA approach performs induc-
tive transfer learning among the tasks via a shared repre-
sentation of U and thus belongs to the multi-task learning
paradigm [7, 8]. As such, the SBA in nature is a multi-task
matrix completion problem.

3.3 Optimization Algorithm

The formulations of PACIFIER are non-convex and we present
a block coordinate descent (BCD) optimization algorithm to
obtain a local solution. Note that for each patient the sub-
problem of PACIFIER-IBA in Eq. (2) is a special case of the
problem of PACIFIER-SBA in Eq. (3) given n = 1. Therefore
in this section we present the algorithm for Eq. (3).
1) Solve U* given Vi and S@:

. n — -2
Ut = argmin Zi:l 3 1S — UV lle + MUl (4)
This is a standard non-negative ¢1-norm regularized problem
and can be solved efficiently using scalable first order meth-
ods such as spectral projected gradient [29] and proximal
Quasi-Newton method [14].



2) Solve V(j') given Ut and Sy

Vi) = argmin > e lse — UV liE (5)
(i)

+ A2 Zizl IV llE + As Zi:l sV Rl

Note that the terms are decoupled for each patient, resulting
in a set of minimization problems:

128 :ar‘g/min%”S(;) —U Vylle (6)
)

2 2
+ 2 Vi lIF + 221V Rey I

The problem in (6) can be solved using existing optimization
solvers. Moreover, since the problem is smooth, it admits a
simple analytical solution [37].

LEMMA 1. Let Q1AM QT = UTU + Mol and Q2A2Q% =
AgR(i)R(Ti) be eigen-decompositions, and let D = QfUTSmQQ,
the problem (6) admits an analytical solution:

« ~ ~ D, 1
V(i) =Q1VQ2, where ‘/j,k = Aﬂj,j)ikz(k,k) . (7)

Note that the parameter Ao improves the stability of the
‘inversion’ in Vj i so that the denominator is guaranteed to
be a positive number. Excluding the time of the two QR
factorizations, the cost of computing the analytical form so-
lution for each sample is given by O(kzpt). The computation
can be greatly accelerated as shown in the next section. In-
cluding the time of QR factorizations, obtaining the results
from the analytical form is typically 100 times faster than
that of solving (5) using optimization solvers.

3) Solve S('B given Ut and VJ)

. n
(S} =argmin 377 SlS0 UVl ©
(i)

subject to:  Pa, (Swi)) = Pa,, (X))

The problem is a constrained Euclidean projection, and is
decoupled for each S E*;). The subproblem for each one admits

a closed-form solution: S, = Pac,) UHVE) + Pag, (Xa)-

Algorithm 1 The BCD algorithm for solving the PACIFIER-
SBA in formulation (3). Given n = 1, the algorithm also solves
the PACIFIER-IBA for each patient in the formulation (2).

Input: Observed locations {Q;}7, values of the observed en-
tries for each patient {PQ(” (X))}, initial solutions {V(?)}{",
sparse parameter A1, parameter A2, smooth parameter A3, la-
tent factor k.

Output: U™, {v(jr)}gl, {S(f.)}?.

Set Vi) = 1Y S = Pag, (X() for all i.

while true do
Update U™ by solving (4) via £1 solvers (e.g. [14, 29]).
Update V(j) by computing (7).
Update S = Pac (UTV(]) +Pa(X ()
if Ut and {V(j)}’f converge then
return U™ and {Vd;}’f
end if N N
Set V(i) = V(i) and S(i) = S(i) for all <.

end while

We summarize the BCD algorithm of PACIFIER-SBA in
Algorithm 1. In our implementation, we randomly gener-
ate the initial concept evolution matrix Vg), and set U, <0i) =
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(0). Therefore the initial value of S is given by S5 =
Pa, (Xay) + Pas,) (oVy) = Pa;, (X(i))- Since the problem
of PACIFIER is non-convex, and thus it is easy to fall into a
local minimum. One way to escape from local minimum is
to ‘restart’ the algorithm by slightly perturbing V; after the
algorithm converges, and compute a new solution. Among
the many solutions, we use the one with the lowest function
value. In the following section we discuss how to accelerate
the algorithm to solve large-scale problems.

3.4 Efficient Computation for Large Scale Prob-
lems

For large scale problems, the storage of the matrix S; and
O(d?)-level computations are prohibitive. However, we no-
tice that in each iteration, we have that S(t) = Pas (Ut V('Z"))—i—
Po, (X)) = UTV) + Pa,(X@) — UTVJ). The “low rank
+ sparse” structure of S(Jg) indicates that there is no need
to store the full matrices. Instead we only need to store
two smaller matrices depending on k and a sparse residual
matrix Po, (X)) — U*VJ)). This structure can be used to
greatly accelerate the computation of Eqgs. (4) and (5). In
the following discussion we denote S(;) = UsmVs(i) + SS(i)‘
1) Solve U. The major computational cost of Eq. (4) lies
on the evaluation of the loss function and the gradient of
the smooth part. Taking advantage of the structure of S;.
We show that all prohibitive O(d?) level operations can be
avoided given the special structures of S(Jg).

Gradient Evaluation:

Vo (3, #1560 — UV lk)

=1

=Vu (Z iH(USu) VS(@) + SS(@)) - UV(”H%)

i=1
" T T T
= E :i:1 % (U(V(i)v(i)) - Us(i)(VS(i)‘/(i)) - SS(i)V(i))

Objective Evaluation:

Zi:l Q%HSG) - UV(i)Hi“
=2, 3 (S0 Sy = 256UV + Vi U UVy)

- n 1 T T T

- Zi—l 2t; <tr (Vs(i> (Us<i) US('DVS('U)) +ir (SS(”SS(“)
+2tr (S5, Us) Vs, )+t (VEWUTUViw))
—2ur (VI (U5, UVi)) —2tr (85, U)Vio) )

For the evaluation of the loss function, it can be shown that
the complexity is O(k*npt) if all patients have ¢ time slices.
Similarly the complexity of computing the gradient is also
given by O(k®npt). Therefore in the optimization, the com-
putational cost in each iteration is linear with respect to n,
p and t. Thus the algorithm is scalable to large data.

2) Solve V. The term U”S(;) can again be computed ef-
ficiently using the similar strategy as above. Recall that in
solving VJ) we need to perform eigen-decomposition on two
matrices: a RF** matrix UTU and a R*** tridiagonal ma-
trix R(i)Rg;). The two matrices are equipped with special
structures: the matrix UTU is a low-rank matrix, and the
matrix R(i)Rg;) is a tridiagonal matrix (a very sparse ma-
trix), whose eigen-decomposition can be solved efficiently.



Note that the complexity of time dimension is less critical,
because that in most EMR, cohorts, the time dimension of
the patients are often less than 1000. Recall that the finest
time unit of the EMR records is day. Using weekly granular-
ity, 1000 time dimension covers up to 20 years of records. In
our implementation we use the built-in eigen-decomposition
of Matlab, which typically takes less than 1 sec for a matrix
with a time dimension of 1000 on regular desktop computers.

3.5 Latent Dimension Estimation

In the formulations in Eq. (2) and Eq. (3), we need to es-
timate the latent dimension of the patient matrices. Indeed,
we can choose the latent dimension via validation methods,
as done for other regularization parameters. As an alterna-
tive, we can use the rank estimation heuristic to adaptively
set the latent dimension of the matrices by inspecting the
information in the QR decomposition of the latent concept
mapping matrix U, assuming that the latent dimension in-
formation of all patients is collectively accumulated in U
after a few iterations of updates. The idea was originally
proposed in [28, 23] to estimate the rank during the matrix
completion of a single matrix.

In order to be self-contained we briefly summarize the
algorithm as follows. After a specified iterations of updates,
we perform the economic QR factorization on UE = Qu Ry,
where F is a permutation matrix such that | diag(Ry)| :=
[r1...7%] is non-increasing after the permutation. Denote
Qp = 1rp/Tpt1, and Omax = max(Qy), and the location is
given by pmax. We compute the following ratio:

7= E=DOmax

2 (p#pmax} i
A large 7 indicates a large drop in the magnitude of Q;
after pmax elements, and we thus reduce the latent factor
k t0 Pmax, retaining only the first pmax columns of U and
the corresponding rows of the evolution matrices {V{;)}. In
our implementation we only perform the estimation once.
Empirically as shown in Section 4.2, the latent dimension
estimation works well when the PACIFIER-SBA works, i.e.,
patients are homogeneous, sharing a few latent concepts.

In the IBA approach the completion of patients are inde-
pendent. If we apply latent dimension estimation on each
patient, then each patient matrix may have a latent dimen-
sion different from others. This imposes difficulties when it
comes to analyze the patients, and thus the estimation is
not used in IBA.

4. EMPIRICAL STUDY

In this section we present the experimental results to demon-

strate the performance of the proposed PACIFIER methods
IBA and SBA. We then study the scalability of the proposed
algorithm with varying feature dimensions, time dimensions,
sample sizes, latent dimensions, and ratios of the observed
entries. We then apply the proposed PACIFIER framework
on two real clinical cohorts to demonstrate the improvement
on predictive performance achieved by our approaches. The
code for the proposed algorithm is available in [33].

4.1 Scalability

In this section we study the scalability of the proposed
algorithm using synthetic datasets. In each of the following
studies, we generate random datasets with a specified sam-
ple n, feature dimension p, average time dimension ¢, latent
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dimension k, and observation density [|€2;]|. For simplicity
we let all samples have the same time dimension. We re-
port the average time cost over 50 iterations. For the two
algorithms we set all parameters to be le — 8 in all studies.

Sample Size. We fix p = 100, ¢t = 100, r = 10, ||Q;]| = 0.01,
and vary the sample size n = 200 : 200 : 1800. The results
are given in Figure 5(a). We observe that for both methods
the time costs increase linearly with respect to the sample
size. The cost of IBA grows faster than the SBA version,
which is expected because in IBA the computation costs of
the loss and the gradients are more than those of SBA.

Feature Dimension. We fix n = 100, ¢ = 100, » = 10, use
||| = 0.01, and vary the feature dimension p = 200 : 200 :
1800. The results are given in Figure 5(b). We see that the
time costs for both methods increase linearly with respect to
feature dimension, which is consistent with our complexity
analysis. The linear complexity of feature dimension is de-
sired in clinical applications, since one might want to use as
much information available as possible, resulting in a large
feature space.

Time Dimension. We fix n = 100, p = 100, r = 10,
[|€2;]] = 0.01, and vary the time dimension ¢ = 100 : 100 :
900. The results are given in Figure 5(c). We find superlin-
ear complexity on the time dimension for both methods,
which mainly comes from the eigen decomposition. The
complexity on time dimension is less critical in the sense
that for most medical records and longitudinal study, the
time dimension is very limited. For example, if the time
granularity is weekly, then we have 52 time dimensions each
year. If 20-year records are available for one patient, then
it yields only 1040 time dimensions. Besides, the eigen de-
composition can be implemented in the way that utilizes
the extreme sparsity of the temporal smoothness coupling
matrix.

Latent Dimension. We fix n = 100, p = 500, t = 500,
[|€:]] = 0.01, and vary the latent dimension input of the
algorithms r = 20 : 20 : 160. The results are given in Fig-
ure 5(d). We find that the time costs increase superlinearly
with respect to latent dimension for both methods, and the
complexity of SBA is close to be linear.

Observed Entries. We fix n = 100, p = 1000, ¢t = 500,
r = 10, and vary the percentage of the observed entries
€] = 0.05 : 0.05 : 0.45. The results are given in Fig-
ure 5(d). We see that the time costs increase only sub-
linearly with respect to the set of observed entries.

We note that the complexity of PACIFIER-IBA is of the
same order as that of SBA. The difference between the
two methods comes from the computation of the objective
value and gradient in the U step. It is obvious that the
IBA methods can be parallelized because the computation
of all samples are decoupled. Similarly, the major computa-
tional complexity of SBA comes from the computation of U
in the optimization and eigen-decomposition of V(;), which
can also be parallelized by segmenting the computation of
each patient.

4.2 Predictive Performance on Real Clinical
Cohorts

To gauge the performance of the proposed PACIFIER frame-
work we apply the two formulations on two real EMR co-
horts from one of our clinical partners. In one cohort we
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factors while fix other factors, and record the time costs. Both methods have the same complexity: linear
with respect to samples size and feature dimension; superlinear with respect to time dimension and latent
dimension; sublinear with respect to the number of observed entries.

study the predictive modeling of congestive heart failure

(CHF), and in the other cohort we study end stage renal

disease (ESRD). In both EMR cohorts we are given a set of

patients associated with their outpatient diagnosis events in

ICD9 codes and the corresponding timestamps. In our ex-

periments we use the prediction windows lengths suggested

by physicians (180 days for CHF and 90 days for ESRD),
and we remove all events within the prediction window be-
fore the operation criteria date.

To construct the longitudinal patient matrices to be im-
puted, we use EMR data at the weekly granularity as dis-
cussed in Section 2. We select the patients with more than
100 events. Note that we are working on a large feature di-
mension, and thus for a patient with 100 EMR events the
longitudinal patient matrix is still extremely sparse. Note
that in our cohorts the number of case patients is much
smaller than control patients, which is very common in most
clinical studies. To avoid the effects of biased samples, we
perform random under-sampling on the control patients so
that we have the equal number of case and control patients in
our datasets. To this end, we have constructed two datasets:
1) CHF dataset with 249 patients in each class; 2) ESRD
dataset with 187 patients in each class.

The raw feature space in the low-level ICD9 codes is 14313.
Because the matrix constructed using the low-level ICD9
codes is too sparse, we retrieve the medical features at coarser
granularities. In order to study the effects of features at
different granularities, we compare the medical features at
ICDY diagnosis group level (DxGroup) and HCC level. At
DxGroup level there are 1368 features and at HCC level
there are 252 features. In the two studies we consider the
following commonly-used baselines methods:

e Zero Imputation (RAW). An intuitive way to impute miss-
ing values, which is equivalent to mean value imputation
when the data set is first normalized (zero mean and unit
standard deviation). This method is standard in the cur-
rent medical literature for clinical studies [25, 27, 30].

e Row Average (AVG). In this baseline approach we fill the
missing value using the average value of the observed val-
ues of the feature over time.

e Interpolation (INT) [5]. We use the next observation and
previous observation along the timeline to interpolate the
missing elements.

e Next Observation Carry Backward (NOCB) [5]. Missing
values are filled using the next observation of this medical
feature along the timeline.
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e Last Observation Carry Forward (LOCF') [5]. Missing val-
ues are filled using the previous observation of this medical
feature along the timeline.

We compare the baseline methods with the following com-

peting methods:

e Individual Basis PACIFIER (IBA). Each patient is densified
using Algorithm 1.

e IBA without temporal smoothness (IBA-NT). This variant
of PACIFIER-IBA sets the temporal regularization A3 to 0.

e Shared Basis PACIFIER (SBA) using Algorithm 1.

e SBA without temporal smoothness (SBANT). This variant
of PACIFIER-SBA sets the temporal regularization A3 to 0.

e SBA with Latent Dimension Estimation (SBA-E). The la-
tent dimension estimation is described in Section 3.5, and
only used once during the algorithm.

e SBA without Temporal Smoothness and with Latent Di-
mension Estimation (SBANT-E). This variant of PACI-
FIER-SBA sets the temporal regularization A3 to 0 and uses
latent dimension estimation once.

Note that for the extremely sparse matrix as the clinical

data in our studies, classical imputation methods such as

those based on k-nearest neighbor [9] and expectation maxi-
mization [22] do not work. The methods IBANT and SBANT
are included in the study to explore the effectiveness of the
proposed temporal smoothness. For the parameter estima-
tion we have separated an independent set of samples for
validation, and we select the parameters that give the low-
est recovery error on the validation set. In IBA, SBA, and

SBANT, the latent dimension k is also determined via the

validation set.

We finally test the predictive performance on the com-
pleted datasets using sparse logistic regression classifier (we
use the SLEP implementation [15]). From the completed
datasets, we derive features by averaging the features along
the time dimension within a given observation window (52
weeks). To this end, each patient is represented as a vector of
the same dimension as the feature dimension. We then ran-
domly split the samples into 90% training and 10% testing,
and train the classifier on the training data. The classifier
parameter is tuned using standard 10 fold cross validation.
We repeat the random splitting for 20 iterations, and report
the average performance over all iterations. In order to be
comparable, the splitting is the same for all methods in each
iteration.

CHF Cohort. The predictive performance of competing

methods is presented in Table 1. We find that in the CHF co-

hort: 1) most of the proposed PACIFIER approaches and their
variants significantly improve the predictive performance as



Table 1: Predictive performance on the CHF cohort

using DxGroup and HCC features.

DxGroup Features

Method AUC Sensitivity Specificity

RAW 0.689 + 0.058 0.747 + 0.046 0.528 +0.115
AVG 0.671 + 0.051 0.744 + 0.064 0.482 + 0.083
INT 0.644 + 0.066 0.803 + 0.062 0.468 + 0.110
NOCB 0.658 + 0.048 0.845 + 0.073 0.443 + 0.096
LOCF 0.689 + 0.055 0.866 + 0.082 0.456 + 0.087
IBA 0.816 + 0.040 0.843 +0.054 0.657 +0.078
IBANT 0.754 + 0.056 0.762 + 0.089 0.597 + 0.097
SBA 0.750 + 0.062 0.776 + 0.067 0.640 + 0.106
SBANT 0.706 + 0.054 0.672 + 0.079 0.631 + 0.066
SBA-E 0.730 + 0.064 0.695 + 0.074 0.653 + 0.095
SBANT-E 0.661 + 0.073 0.678 + 0.090 0.588 + 0.095

HCC Features

Method AUC Sensitivity Specificity

RAW 0.645 + 0.089 0.672 + 0.086 0.529 + 0.072
AVG 0.660 + 0.053 0.683 + 0.063 0.526 + 0.089
INT 0.596 + 0.072 0.768 + 0.093 0.489 + 0.082
NOCB 0.602 + 0.081 0.694 + 0.088 0.511 + 0.093
LOCF 0.625 + 0.067 0.852 + 0.079 0.480 + 0.083
IBA 0.755 + 0.071 0.747 + 0.085 0.641 + 0.084
IBANT 0.727 + 0.060 0.740 + 0.087 0.614 + 0.070
SBA 0.736 + 0.066 0.753 + 0.089 0.629 + 0.074
SBANT 0.645 + 0.070 0.686 + 0.087 0.550 + 0.095
SBA-E 0.702 + 0.079 0.688 + 0.106 0.616 + 0.067
SBANT-E 0.669 + 0.062 0.702 + 0.082 0.538 + 0.079

compared to the baseline RAW approach. The best AUC
obtained by PACIFIER-IBA dataset is 0.816 while the base-
line is only 0.689 (a gain of 0.127); 2) the individual basis
approaches outperform shared based ones; 3) temporal regu-
larization significantly improves the predictive performance
for all methods; 4) the methods with latent dimension es-
timation perform worse than those that do not use latent
dimension estimation on this cohorts; 5) the features at Dx-
Group level outperform HCC level, which might be due to
that in this predictive task, a fine granularity is likely to
maintain more predictive information, than a coarse one.
ESRD Cohort. The predictive performance on ESRD
cohort is given in Table 2. For the DxGroup features we
observe similar patterns that is, IBA outperforms all other
methods, which achieves an AUC of 0.828, compared to
the baseline RAW method that achieves 0.756 (a gain of
0.072). The variants with temporal smoothness perform
much better than the ones without temporal smoothness.
For the HCC features we see that: 1) the shared basis ap-
proaches perform as well as the independent basis, where
SBA-E achieves an AUC of 0.827. 2) again the temporal
smoothness significantly improves the performance. 3) la-
tent dimension estimation works well and outperforms the
ones without latent dimension estimation.

As a summary, the experimental results have demonstrated
the effectiveness of the proposed methods on real clinical
data, and the temporal smoothness regularization brings sig-
nificant improvements on predictive performance. In real
clinical data, the samples tend to be heterogeneous and
therefore the independent basis approaches perform better.
However, using the HCC features of the two datasets, shared
basis approaches perform better than using the DxGroup
features. One potential explanation is that, using HCC fea-
tures where the features space is smaller and features them-
selves are coarser (in terms of clinical concepts), the patients
tend to be more homogeneous. We also notice that the la-
tent dimension estimation only works well when shared basis
works well. Recall that the idea of latent dimension estima-
tion is to detect the jumps in the diagonal elements from
the Ry factor of QR factorization. This is expected because
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Table 2: Predictive performance on the ESRD co-

hort with DxGroup and HCC features.

DxGroup Features

Method AUC Sensitivity Specificity

RAW 0.756 4+ 0.086 0.831 +0.113 0.581 + 0.077
AVG 0.775 + 0.079 0.821 4+ 0.093 0.592 4+ 0.084
INT 0.747 + 0.083 0.919 +0.104 0.568 +0.110
NOCB 0.766 + 0.092 0.914 + 0.099 0.556 + 0.103
LOCF 0.787 + 0.085 0.958 + 0.107 0.577 + 0.079
IBA 0.838 + 0.072 0.842 + 0.099 0.658 + 0.106
IBANT 0.796 4+ 0.066 0.806 + 0.101 0.600 + 0.095
SBA 0.811 4+ 0.065 0.769 4+ 0.091 0.722 + 0.097
SBANT 0.763 + 0.068 0.719 + 0.109 0.697 + 0.075
SBA-E 0.803 4+ 0.056 0.753 4+ 0.098 0.681 4+ 0.090
SBANT-E 0.770 4+ 0.082 0.689 4+ 0.099 0.700 + 0.110

HCC Features

Method AUC Sensitivity Specificity

RAW 0.758 4+ 0.058 0.747 + 0.085 0.656 + 0.093
AVG 0.778 + 0.055 0.789 + 0.088 0.660 + 0.088
INT 0.729 4+ 0.067 0.752 4+ 0.091 0.652 4+ 0.094
NOCB 0.752 + 0.079 0.775 4+ 0.089 0.658 + 0.095
LOCF 0.771 4+ 0.068 0.808 4+ 0.082 0.665 + 0.081
IBA 0.826 + 0.051 0.800 % 0.085 0.708 &+ 0.080
IBANT 0.802 4+ 0.064 0.775 + 0.094 0.714 + 0.089
SBA 0.820 4+ 0.064 0.789 4+ 0.091 0.722 + 0.092
SBANT 0.771 4+ 0.082 0.733 + 0.084 0.681 + 0.102
SBA-E 0.827 + 0.067 0.814 4+ 0.077 0.706 4+ 0.096
SBANT-E 0.785 + 0.060 0.736 + 0.065 0.717 + 0.092

if the patients are homogeneous and share only a few basis,
then obviously there are such natural jumps.

4.3 Macro Phenotypes Learned from Data

In this section we show some meaningful medical con-
cepts learned by the proposed PACIFIER-SBA method. In
the latent medical concept mapping matrix U, we are able
to obtain feature groups from data, because of the sparsity
on the matrix. We first normalize weights of the columns
such that the sum of each column is equal to 1. The nor-
malized weights indicate the percentages of medical features
contributing to the medical concept. We rank the medical
features according to their contributions and find that in
most of the medical concepts the top medical features are
typically related and are comorbidities of a certain disease.
In Figure 3, we show a list of medical concepts obtained from
our CHF cohort. For example, in the first medical concept,
the highly ranked diagnosis groups are all related to Car-
diovascular Disease, e.g., Heart failure (428), Hypertension
(401) and Dysrhythmias (427), and the second medical con-
cepts include features that are typical related to Diabetes
and its related comorbidities such as Hypertension (401),
Chronic renal failure (585). In the CHF cohort, we have
also found very similar medical concepts.

S. RELATED WORKS AND DISCUSSION

In this paper we treat the zeros in the longitudinal patient
matrices as missing values, and proposed a novel framework
PACIFIER to perform temporal matrix completion via low-
rank factorization. To the best of our knowledge, there are
no prior work that applies matrix completion techniques to
solve the data sparsity in EMR data. The proposed PACI-
FIER framework aims at densifying the extremely sparse
EMR data by performing factorization based matrix com-
pletion. The differences between the proposed completion
method and existing works are that: instead of treating each
patient as vectors and forming a single matrix, we treat each
patient as a matrix with missing entries and consider a set of
related matrix completion problems. We further propose to



Table 3: Medical concepts discovered by the Paci-
fier-Sba in our CHF cohort. In each medical con-
cept, we firstly normalize the weights of the medical
features in the medical concepts learned and rank
the features. For each medical concept we list top
10 medical features and their diagnosis group codes.

Medical Concept: Cardiovascular Diseases

Weight | DxGrp | Description

0.164 428 Heart failure

0.121 401 Essential hypertension

0.113 427 Cardiac dysrhythmias

0.108 780 General sympt.

0.14 414 Other form of chronic ischemic heart disease
0.053 785 Symp. inv. cardiovascular sys.

0.052 786 Symp. inv. respir. sys. and other chest sympt.
0.046 402 Hypertensive heart disease

0.042 272 Diso. of lipoid metabolism

Medical Concept: Diabetes

Weight | DxGrp | Description

0.211 250 Diabetes mellitus

0.129 272 Diso. of lipoid metabolism

0.115 278 Obesity and other hyperalign.
0.095 593 Other diso. of kidney and ureter
0.093 585 Chronic renal failure

0.068 599 Other diso. of urethra and urinary tract
0.065 790 Nonspe. find on exam of blood
0.058 401 Essential hypertension

0.023 366 Cataract

0.019 285 Other and unspecified anemias

Medical Concept: Lung Diseases

Weight | DxGrp | Description

0.117 518 Other diseases of lung

0.112 496 Chronic airways obstruction

0.110 786 Sympt. inv. respir. sys. and other chest symp.
0.098 V72 Special investigations and exam

0.089 493 Asthma

0.087 599 Other diso. of urethra and urinary tract

0.086 466 Acute bronchitis and bronch.

0.078 780 General symp.

0.067 787 Symp. inv. digestive sys.

0.057 793 Nonspec. ab. find on radio. and other exam of

body structure

Medical Concept: Osteoarthrosis

‘Weight | DxGrp | Description

0.185 729 Other diso. of soft tissues

0.123 715 Osteoarthrosis and allied diso.
0.120 726 Peripheral enthesopathies and allied syndr.
0.118 401 Essential hypertension

0.082 733 Other diso. of bone and cartilage
0.081 366 Cataract

0.069 719 Other and unspec. diso. of joint
0.066 272 Diso. of lipoid metabolism

0.065 780 General symp.

0.008 244 Acquired hypothyroidism

Medical Concept: Disorder of joints and softtissues

Weight | DxGrp | Description

0.103 719 Other and unspec. diso. of joint
0.096 729 Other diso. of soft tissues

0.081 789 Other symp. involving abdomen and pelvis
0.078 722 Intervertebral disc diso.

0.058 724 Other and unspec. diso. of back
0.056 780 General symp.

0.055 721 Spondylosis and allied diso.

0.053 728 Diso. of muscle, ligament, and fascia
0.048 733 Other diso. of bone and cartilage
0.048 723 Other diso. of cervical region

incorporate the temporal smoothness to utilize the hidden
temporal information of each patient.

The problem of imputation via matrix completion prob-
lem is one of the hottest topics in data mining and ma-
chine learning. In many areas such as information retrieval
and social network, the data matrix is so sparse that clas-
sical imputation methods does not work well. The basic
problem setting of the matrix completion is to recover the
unknown data from only a few observed entries, imposing
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certain types of assumptions on the matrix to be recovered.
The most popular assumption is to assume that the matrix
has a low rank structure [2, 18, 28, 31]. There are two types
of matrix completion in terms of the assumption on the ob-
served entries: The first type assumes that the observation
has no noise, and the goal is to find a low rank matrix whose
values at the observed locations are exactly the same as the
given ones [2, 3, 11]. In real world applications, however,
noise is ubiquitous and thus the rigid constraint on the ob-
served locations may result in overfitting. In contrast, the
noisy matrix completion methods only require the values
at the observed locations to be close to the given data [18,
28]. Directly dealing with the rank function in objectives
are shown to be NP-Hard. Therefore many approaches seek
to use the trace norm which is the convex envelope of the
rank function [2, 11, 18]. Most of these approaches, how-
ever, require singular value decomposition (SVD) on large
matrices, the complexity of which is prohibitive for large
scale problems. Recent years have witnessed surging inter-
ests on the local search methods, which seek a local solution
with extremely efficient algorithms [21, 28]. The PACIFIER
framework is among these efficient local approaches, which
does not require SVD and can be applied to solving large
scale problems.

The completed data for each patient has the factorization
form of X;y = U)V(y), and for SBA all patients have the
same U;). Clearly, one advantage of SBA is that we have si-
multaneously learned a shared low-dimensional feature space
for all patients, and their coordinates that can be used as
new (and reduced) features. To see this, let U = Qu Ry be
the QR factorization of U, then for each patient we have that
Xy = UV = Qu(RuVy), indicating that rows of (RV(;))
can be considered as coordinates on the low dimensional
space whose bases are given by columns of Qu. One issue
brought by the shared mapping is that the latent dimen-
sion is limited by the lowest time dimension of the patient,
i.e., min; t; > k. One solution is that we can extend the
time dimension of the patients with non-informative time
dimensions of all zeros.

We have shown in the experiments that a shared concept
mapping works better on homogeneous samples while indi-
vidual mappings work better on heterogeneous samples. In
reality the samples may form some groups such that within
the groups the patients are homogeneous and patients from
different groups may be heterogeneous. The degree of homo-
geneous/heterogeneous is also affected by feature granularity
as shown in our real clinical experiments, where in finer fea-
ture level the patients appear to be more heterogeneous. It
is thus interesting to explore how to simultaneously identify
feature groups and patient groups to further improve the
quality of matrix completion. To do so, we can incorporate
group learning into the objective as done in [32]:

oM L D B, 15— UsVillh + R, (V)

where G is the patient group assignment matrix, and pa-
tients within each group G; share the same basis U;. We
leave this interesting study to our future works. One final
note — the proposed PACIFIER framework proposed in this
paper is not limited to healthcare domain, they can also be
applied to temporal collaborative filtering [12, 16, 31], where
each user has a rating preference that changes overtime.

6. CONCLUSION

In this paper, we propose a data driven phenotyping frame-
work called PACIFIER (PAtient reCord densIFIER) to den-



sify the sparse EMR data. The PACIFIER interprets the lon-
gitudinal EMR of each patient as a sparse matrix with a
feature dimension and a time dimension, and estimates the
missing entries in those matrices by leveraging the latent
structures on both time and feature dimensions. We propose
two formulations: Individual Basis Approach (IBA), which
densifies the matrices patient by patient, and Shared Ba-
sis Approach (SBA), which densifies the matrices of a group
of patients jointly. We develop an efficient optimization al-
gorithm to solve the framework, which scales to large-size
datasets. We have performed extensive empirical evalua-
tions on both synthetic and real datasets, including two real
world clinical datasets. Our results show that the predictive
performance in both tasks can be improved significantly af-
ter the densification by the proposed methods.
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